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Extended Leveque problem is studied for linear velocity profiles, vx(z) = u + qz. The existing 
analytic solution is reconsidered and shown to be inapplicable for the accurate calculation of 
mean mass-transfer coefficients. A numerical solution is reported and its accuracy is checked 
in detail. Simple but fairly accurate empirical formulas are suggested for the calculating of local 
and mean mass-transfer coefficients. 

Both the thermoanemometrical and electrodiffusion flow measurements are based 
on the phenomenon of convective diffusion. There are, however, substantial dif­
ferences in their relationship to the corresponding mathematical theory. The calibra­
tion measurements for a given liquid under given temperature are unavoidable in the 
thermoanemometry due to both geometrical imperfections of the sensing elements 
and rather complex nature of their thermal interactions with the body of probe l . 

On the contrary, the electrodiffusion measurements under the actual condition of 
limiting diffusion currene allow to perform various absolute measurements - the 
determination of the concentration Co or diffusivity D of certain depolarizers as well 
as the measuring of the wall shear rate q under given flow conditions - as the 
electrodiffusion sensors can be manufactured with the necessary geometrical perfec­
tion of the surface3 . The absolute nature of carefully performed electrodiffusion 
measurements allowed to discover the anomalous flow behaviour of suspensions 
and polymer solutions in an extremally thin "slip" layer close to a solid surface4 •5 . 

In this sense, the laboratory practice of electrodiffusion measurements is encouraging 
also the development of the corresponding transport theories. 

In the hydrodynamics of Newtonian liquids, the assumptions are commonly taken 
of no slip at solid surfaces, homogeneity and isotropy of liquid even in an intimate 
neighbourhood of the wall. Under these conditions, the velocity profile, at least 
within the diffusion layer, is given by the relation tJxCz) = qz. Then, also the integral 
effect of convection is represented by a single kinematic parameter, the wall shear 
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rate q. The corresponding formulas for calculating q from electrodiffusion data 

q = DL{t/f3ob)3 = D- 2 L(F/f3onFcoQ)3 , 

f3~1 = f~ exp (-s3/9) ds = r(t)/3 1/ 3 , 

represent the well-known result3 which has been first given by Leveque. 

(1) 

(2) 

In an analogous analytic way it is possible to solve slightly more general problem 
of steady convective diffusion for the power-law velocity profile inside a diffusion 
layer, 

v.(z) = azP , (3) 

"with the explicite result for the mean current density6: 

_1_ . = D/b = 2 + p (~+ p)P/~~ D (~)1/(2+P) 
nFcoQ 1 + P r(t/(2 + p» LD 

(4) 

Unfortunately, this result cannot form a sufficiently general basis for the electro­
diffusion investigation of velocity profiles at wall because the kinematical assumption 
(3) is unreal at the solid surface and outside of the slip layer as well. Both the experi­
mental4 and theoretical? evidences have shown that the velocity profile outside of 
a narrow slip region under condition of constant shear stress can be represented 
by the linear relation 

vx(z) = u + qz. (5) 

Here, the apparent slip velocity u represents the anomalous wall effects taking place 
within the slip region which is assumed to be thin enough as compared with the dif­
fusion thickness. The shear rate q represents the regular flow patterns outside of the 
slip region under conditions of constant shear stress in the bulk of a homogeneous 
liquid which can exhibit non-Newtonian flow behaviour. 

The corresponding problem of convective diffusion has been treated by using 
standard analytic methods 8 and, at least in the chemical engineering literature?, it 
is considered to be succesfully solved. It is the purpose of the present paper to develop 
working formulas analogous to Eqs (1), (4), for this problem. First, the analytic 
solution8 is reconsidered and shown to be of a little interest for treating experimental 
data on mass-transfer coefficient. Further, the numerical solution is presented with 
a high accuracy guaranteed. As a result, the simple working formulas, Eqs (41) to 
(44), are given. 
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THEORETICAL 

Problem Statement, Analytic Solution 

Starting formulation comprises the equation of steady convective diffusion for the 
concentration field c = c( z, x) of a depolarizer, 

(6} 

the condition of a limiting diffusion current, i.e. of the total depletion of the de­
polarizer at the electrode surface, 

c = 0; for z = 0 , (7) 

and the condition of the fresh solution in the bulk of liquid, i.e. outside of the dif­
fusion layer, 

c --+ co; for ;; --+ 00 • (8) 

By introducing the normalized variables, as defined in the List of symbols, the fol­
lowing boundary-value parabolic two-dimensional problem is obtained: 

02 C* - (1 + Z) (i C* = 0 zz x' 

C* = 0; for Z = 0 , 

C* --+ 1; for X --> 0, Z > 0, (9) 

C* --+ 1; for Z --> 00 . 

The most important part of the solution is represented by the local and mean mass­
-transfer coefficients or the corresponding diffusion thicknesses. In the dimensionless 
form, they are given through the normalized concentration field: 

K(X) = ozC*iz;o ' 

B(X) = lIK(X) , 

K(l-I) = l-I- 1 Sg K(X) dX , 

B( l-I) = 11 K(l-I) . (10) 

The problem so stated has been treated in the works by using the Laplace trans­
form, expanding the image of K(X) into series and inverting them term-by-term. 
Unfortunately, after giving rather general framework, the authors8 presented only 
the first two terms in the resulting expansions for local mass-transfer coefficients. 
Their approach has been completely realized in an unpublished research report9 , 

with the following results. 

Collect. Czech. Chern. Commun. (Vol. 54) (1989) 



970 Wein, Kucera: 

The low-X series expansion (X --+ 0) can be writt~n in the form of partial sums, 

where 

ao = 1, 
i 

Q j = rj - LSja j - j , 
j= 1 

ro = 1, rjh-l = -(6j + 1) (6j - 7)/48j, 

So = 1, s)Sj-t = -(6j - 1)(6j - 5)/48j. 

In particular, for X --+ 0: 

K (X) ~ X-l/l X 1/ 1 X L ~ IXo + IXl + IXl + IX3 + ... , 
with 

and, in general, IXj = adr(i + 1/2). 

(11) 

(12) 

(13) 

The high-X series expansion can be expressed by using an analogous sequential 
algorithm: 

where 

i 

bo = (J, bj = rj - LSjb j _ j , 
j=1 

ro = (J, r1 = 0, 
I 1 

r2 = - 2(J' r)rj _3 = j{j _ 2) , 

So = 1, SI = - (J , 
1 

S)Sj_3 = }(j _ 1)' 

In particular, for X --+ co: 

with 

Po = 31/3/r(t) == 0·538366, 

PI = (Jl/r(t) == 0'198383, 

(14) 

(15) 
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P3 = (- t(13 + t) Po == -0·009709, 

P4 = (-i0"3 + -(-s) P1 == 0·003866. 

and, in general, Pi = hdr((2 ..... i)/3). 
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By applying the formal term-by-term integration of the series (14), in accordance 
with the definition (10), the following expressions can be obtained for the mean 
mass-transfer coefficients: 

(17) 

for X -. 0, and 

(18) 

for X -. 00. It should be noticed that only the first two terms can be correctly applied 
in the series (18), 

(19) 

as the formal integration of a power-function'/(X) = XP, with the lower limit X = 0 
is obviously incorrect for p ~ -1. 

The first 500 coefficients OCi' Pi have been computed and the following result was 
found in an empirical way: 

lim /oci/ioci-2/ = 00, lim /PdiPi-3/ = 00 . 
i ..... ClO i -+ co 

(20) 

This indicates the asymptotic nature of all the series (11), (14), (17). (18) which there­
fore must necessarily be divergent for any finite value of the argument X. For a prac­
tical calculation of mass-transfer coefficients it means that only certain estimates 
can be made by using these expansions. 

A few sample-calculations are given in Fig. 1 which show the divergency of the 
partial sums for mass-transfer coefficients. The way of optimizing of the upper and 
lower estimates is also shown there. The resulting optimized estimates of K and K 
are plotted in the Figs 2 and 3. For a better distinguishing over rather broad region 
of X and H, the estimates of mass-transfer coefficients are normalized there by using 
the first terms of the corresponding low-X expansions, 

(21) 

The uncertainty of these estimates is about 2% for local and more than 5% for 
mean mass-transfer coefficients. The corresponding quantitative information must 
therefore be found in another way, e.g. by applying finite-difference methods. 

Collect. Czech. Chern. Commun. (Vol. 54) (1989) 



972 Wein, Ku{:era: 

Numerical Solution 

An acceptable accuracy can be guaranteed at solving a boundary-value problem by 
finite-difference methods only if the actual formulation to the problem includes no 
singularity. The extended Leveque problem exhibits a weak singularity in the corner 

K,IKLQ 

1i'.;l<lO 

FIG. 1 

40 
N 

Divergency of partial sums representing local 
and mean mass-transfer coefficients; 1 
H = 0·2, mean, low-H asymptote, Eq. (17); 
2 X = 0·2, local, high-X asymptote, Eq. (14); 
3 H = 0·2, mean, high-H asymptote, Eq. 
(18); the arrows show the optimized lower 
and upper estimates 
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FIG. 2 

Local mass-transfer coefficients; E exact 
numerical solution; HO Leveque solution, 
i.e. the single term in high-X expansion; 
HU, HL upper and lower estimates by high-X 
expansion; HU, HL upper and lower esti­
mates by high-X expansion; LU, LL upper 
and lower estimates by low-X expansion 

FIG. 3 

Mean mass-transfer coefficients. The meaning 
of symbols is same as in Fig. 3. The estimate 
HL is identical with the single-term asymp­
tote HO 
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(Z, X) = (0,0). This can be removed by using any "similarity" transformation of the 
type 

C(w, b) = C*(Z, X), w = Zjb, b' = b(X), (22) 

where b(X) '" Xl/2 for X -+ o. 
A special choice has been made of the normalizing function b(X) by defining it 

implicitly, as the positive root of the cubic equation 

(23) 

By applying this similarity transformation, the starting problem is modified into the 
foIlowing form: 

C" + A(t + bw) wC = A(l + bw) bebC , 

C(O, b) = 0, 

C(W oo , b) = l, 

A == b . dbjdX = Ij(2!X~ + 3f3~b) . 

(24) 

(25) 

(26) 

(27) 

It can be easily seen that this formulation allows two asymptotic similarity solutions: 

J~ exp (-s2j4!X~) ds; for b -+ 0, 

C - { 
~ J~ exp (-s3j9f3~) ds; for b -+ 00. 

(28) 

It can be expected that the dependence of the exact solution, C = C( w, b), on the 
longitudinal coordinate b is rather weak even over the transient region of medium 
values of b, i.e. that the field C(w, b) exhibits the similarity structure in an acceptable 
approximation. This assumption has been implied tacitly, by lIsing the symbol' for 
the partial derivatives with respect to IV, C' = owC, etc. 

In principle it should be set WOO = 00. However, it can be shown that the sufficient 
accuracy of six valid digits for C(O, b) is reached by choosing the value WOO ~ 4. 
The choice WOO = 4·2 was made in the present numerical analysis. 

The normalized local diffusion thickness B and the corresponding mass-transfer 
coefficient K can be now expressed in the following way, 

H(X) = IjK(X) = b(X)jG(X) , (29) 

where G = G(X) stands for the wall gradient of the similarity concentration profile: 

G(X) = C(O, b(X)) . (30) 
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It follows from Eq. (28) that G(X) ~ 1 holds for the both asymptotes. This suggests 
that the same equality could hold, within some approximation, over the whole 
domain of X. Slight deviations of the difference G-l from zero hence present the 
main object for the following numerical study. 

The Crank-Nicholson method10 of integrating parabolic differential equations 
allows to compute the next concentration profile (at bj = b + Ab) if a previous one 
(at bj - 1 = b) is given. This method can be used with no modification in the consi­
dered case as the initial conditions are given by the asymptotical concentration 
profile (28) for X -+ O. By introducing the discrete representation of the concentration 
field on rectangular two-dimensional mesh with given m, Ab: 

C~ = C(Wj' bj ), Wj = i . Aw, bj = j . Ab , (31) 

Aw = woo/m, i = 0, ... , m, j = 0,1, ... , 

the following linear system of equations is obtained for C~, i = 1, ... , m - 1: 

with 

Qj = C{~~ + C~=~ + S1-1(Ci~~ - c1=D - (2 - R j). C{-l, 

Rj = «AW)2/Ab)(bj- 1T/- t + bjT/). (33) 

S: = t(AW)2 iTjj , 

T/ = (1 + bjwj) A(b j ). 

The system of m - 1 linear equations is closed by the pair of boundary conditions 
at Wo = 0 and w'" = woo: 

C~ = 0, C~ = 1. (34) 

The wall gradient G was calculated in several ways. First, the common method has 
been used of truncated Taylor series, 

M 

GM = GM{X(bj )) = L d~C! , (35) 
i=O 

for M = 1,2, 3,4, with the coefficients d~ given e.g. in the reference book10• Further, 
the formula 

e'(O, b) = bA(b) J~ {(I + tbw) (1 - C) - (1 + bw) abC} dw (36) 

can be derived by integrating the original differential equation (24). By using the 
Simpson rule for quadratures and the first difference for the derivative abC at b = bj 
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fib!2, the formula (36) results in another estimate of G = G(X) which will be marked 
by the symbol Gs in the subsequent discussion. 

Discussion of Accuracy 

There are the three adjustable parameters, woo, m, fib, which can effect the accuracy 
of the numerical solution. It has been found in numerical experiments that the 
accuracy does not depend on further increasing WOO above WOO = 4·2 or on further 
diminishing fib below fib = 0·02. These values have therefore been used in all the 
numerical calculations referred to in the following text. 

The choice of an appropriate number of mesh points, m, has shown to be a delicate 
problem. The values about m = 40 represent a minimum necessary to reaching 
a meaningful result. On the other hand, the number of mesh points above m = 500 
resulted in unacceptably long computational times. The dependency of the resulting 
estimates of G on the number of mesh points is shown in Table I. 

Some conclusions can be drawn from these results. First, G4 is rather independent 
of thinning of the mesh and therefore it can be taken as the best of the estimates at 
hand. Second, the difference (G4 - Gs) seems to be the most sensitive criterion of the 
accuracy reached. Third, the differences between the G4 estimates for m = 200 and 
m = 400 are negligible as compared to the desired accuracy of 5 to 6 valid digits. 
In result, the G4 estimate of G in the region X < 50 is believen to be an appropriate 
representation of exact solution with the said accuracy. Nevertheless, the accuracy 
of the G4 estimates at higher values of X remains uncertain as the difference (G4 - Gs) 
is still remarkable there. 

Fortunately, there is another way of checking the accuracy because the analytic 
asymptotes to the exact solution are known. The normalized concentration gradient 
G can be expressed from the definition (29) as the product 

G(X) = K(X) b(X) (37) 

of the two functions which both have the known asymptotic representations. In 
particular, b(X) can be expressed from its definition by Eq. (23): 

and the asymptotic expansions for K(X) are given in Eqs (13), (16). By substituting 
these expressions into Eq. (37), the following final asymptotic representations are 
obtained for X -+ 0: 

(39a) 
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and for X -+ 00: 

with 

11 = at/ao - t(po/ao)3 == 0,008676, 

12 = a2/aO - !(al/aO) (Po/ao)3 + i(Po/ao)6 == -0'033164, 

01 = pt/Po - !(ao/poY == 0'002410, 

02 = 0 - !(pt/Po) (ao/po)2 + t(ao/po)4 == -0,000883. 

(39b) 

The final comparison of the various estimates of G is shown in Fig. 4. The numerical 
data G4 = G4(X) for m = 400 merge into the both analytic asymptotes (39a, b) with 
an accuracy of 5 to 6 valid digits. An empiric formula has been found for representing 

TABLE! 

Effect of mesh dividing on the accuracy of results. ea = (Ga - 1)* 100%, for a = 1,2,3,4, S 

m b X e1 e2 e3 e4 es 

50 0·1 0·003 -0,14 0'38 0·04 0'03 -0,25 
0·2 0·014 -0,10 0'38 0'06 0'05 -0,24 
0·5 0·099 -0,05 0·37 0·08 0'08 -0,24 
1·4 1·052 -0'01 0·29 0·05 0·07 -0'31 
3·5 10·59 -0·03 0·17 -0·02 0'02 -0'42 

100 0·1 0·003 -0,01 0·13 0'04 0'04 -0,03 
0·2 0·014 0·02 0·15 0·07 ·0·07 0·01 
0·5 0·099 0·07 0·18 0·10 0'10 0·02 
1·4 1·052 0·09 0·16 0·11 0·11 0·02 
3·5 10·59 0·06 0·10 0·06 0·07 -0,04 

200 0·1 0·003 0·03 0·06 0·04 0·04 0·03 
0·2 0·014 0·06 0·09 0'07 0·07 0·05 
0·5 0·099 0·10 0·13 0·11 0·11 0·10 
1·4 1·052 0'11 0·13 0'12 0·12 0'10 
3·5 10·59 0·08 0·09 0'08 0'08 0·05 
7·2 74·74 0'05 0'05 0·05 0·05 0·02 

400 0·1 0·003 0·04 0·05 0·04 0'04 0'04 
0·2 0·014 0·07 0'08 0·07 0·07 0·07 
0·5 0'099 0·11 0·11 0·11 0·11 0·11 
1·4 1·052 0·12 0·12 0·12 0-12 0·12 
3·5 10·59 0'08 0·09 0'08 0'08 0·08 
7·2 74·74 0·05 0·05 0'05 0·05 0·04 

10,0 187·9 0·04 0·04 0·04 0·04 0'03 
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these numerical data, 

(40) 

which contains only the parameters ft. g 1 taken from the analytic solution to the 
problem. This formula merges in the both asymptotes exactly and represents a sound 
extrapolation of the numerical data for m -+ 00 as well. There are reasons to believe 
that the formula (40) guarantees the accuracy better than 0·01 % in calculating 
G(X) = C(O, X). 

Mean Diffusion Thickness 

It should be noticed that the deviation of G-t from zero does not exceed 0·001 and 
therefore it can be neglected in experimental data treating. The assumptions G = 1 
and B = b are equivalent each to other, see Eqs (23), (29). They result in the implicite 
formula for calculating the local mass-transfer coefficients K = K(X) or the local 
diffusion thicknesses B = B(X), 

(41) 

By integrating this equation in accordance with the definitions (10), the simple 
working formula is obtained for mean diffusion thicknesses in the parametric form, 

where BH = B(H) is the root of a cubic equation, 
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An additional simplifying empiricism consists in approximate representation of the 
function B = B(H) in a form analogous to Eq. (42b): 

(43) 

which provides the values of B within an accuracy of 1 %. This equation can be re­
written into the following dimensional form 

(44) 

With a known value of D, the pair of kinematic parameters u, q can be determined 
by treating the data on mean diffusion thickness, 8, for a serie of geometrically similar 
electrodes of different sizes L, under identical flow conditions, i.e. under the constant 
shear stress at wall. 

CONCLUSION 

Instead of the existing analytic solutionS which does not provide the desired quanti­
tative information, the numerical solution to the problem has been constructed, and 
the resulting concentration gradient at wall is represented by the simple but accurate 
empirical formula (40). The final result, as represented by Eq. (44), can be straight­
forwardly used for treating electrodiffusion data by common statistical methods. 
This equation contains two numerical coefficients which have been given for the case 
of rectangular (band) electrodes in the present paper. 

For the more common, circular, shape of working electrodes, the corresponding 
formula has the same general structure as Eq. (44), with the electrode radius R 
instead of the length L and with different values of the numerical coefficients. This 
can be derived by using the approach given in the recent work11 • Within an accep­
table accuracy, the Eq. (44) can be used with no change if the effective length L = 
= 1·64R is introduced ll . 

This work has been done during the stay of one of the authors (0. W.) at the University Dortmund. 
F. R.G. The kind interest of Prof U. Onken as well as the help of the staff of his department in using 
the department computers are gratefully acknowledged. 

LIST OF SYMBOLS 

OJ coefficients in asymptotic expansions for X --+ 0 
A = b db/dX 
b auxiliar longitudinal coordinate, Eqs (22), (23) 
t:.b mesh step in the longitudinal direction 
B = oq/u, normalized local diffusion thickness 
B = 6q/u, normalized mean diffusion thickness 
bj coefficients in asymptotic expansions for X --+ 00 
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Co depolarizer concentration in the bulk of solution 
c(z, x) concentration field of a depolarizer 
C*(Z, X) = c(z, x)/co, normalized concentration field 
C(w, b) = C*(Z, X), similarity concentration profiles with the axial coordinate b 

C' 
d 

I 

D 
nF 

as a parameter 
gradient of the similarity concentration profile 
value of C in the mesh point (Wi' bJ) 
diffusivity of depolarizer 
the charge transferred on working electrode by the reaction of 1 mole 
of a depolarizer 

G(X) = C'(O, b(X», similarity concentration gradient at wall 
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GM estimate of G based on Taylor series and using M inner mesh points, i = 1, ... , M 
Gs estimate of G based on the macroscopical balance (36) 
Gv GH asymptotic estimates of G for X ->- 0 and X ->- co, resp. 
Gs empiric representation of exact G, Eq. (40) 
Ii' Ui coefficients in asymptotic representations of G 
H = LDq2/ u3 , dimensionless electrode length 

I limiting diffusion current 
',J non-negative indexes (0, 1,2, •.. ) 
k = DOzclz=o/co, local mass-transfer coefficient 
k = L -1 J~ k dx, mean mass-transfer coefficient 
K= ku/qD 
K= ku/qD 
KL , KH asymptotic representations of K for X ->- 0, X ->- co, resp. 
KL , KH asymptotic representations of K for X ->- 0, X ->- co, resp. 
KLN, K HN, KLN, KHN - partial sums truncated after NIh term 
KLO = (7tX)-1/2 
KLO = 2(7tH)-1/2 

L length of a band working electrode 
L length of a band working electrode in the direction of flow 
m number of mesh points on the w - coordinate 
N number of terms in truncated series, see Eqs (11), (14), (17), (18) 
q shear rate at wall, see also Eq. (.5) 
R radius of a circular working electrode 

u slip velocity, see also Eq. (.5) 
vx(z) profile of longitudinal velocities 
W = Z/b(X), similarity argument 
Aw mesh step in the similarity argument 
WOO actual infinity in the numerical solution 
x longitudinal coordinate, distance from the forward edge of the working electrode 
X= xDq2/u3 
z perpendicular coordinate, distance from the surface of the working electrode 
Z= zq/u 
lXi' Pi coefficients in the resulting asymptotic representations of mass transfer coefficients, 

Eqs (13), (16) 
r Euler's gamma function 
0= D/k, local diffusion thickness 
~ = D/k = nFDco/I, mean diffusion thickness 
Q area of working electrode 
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